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Abstract
Absence of localization is demonstrated analytically to leading order in weak disorder in a
one-dimensional Anderson model of a ring threaded by an Aharonov–Bohm (AB) flux. The
result follows from adapting an earlier perturbation treatment of disorder in a superconducting
ring subjected to an imaginary vector potential proportional to a depinning field for flux lines
bound to random columnar defects parallel to the axis of the ring. The absence of localization in
the ring threaded by an AB flux for sufficiently weak disorder is compatible with large
free-electron-type persistent current obtained in recent studies of the above model.

The nature (localized or delocalized) of the eigenstates in
a disordered metallic ring threaded by an Aharonov–Bohm
(AB) flux is expected to strongly influence the magnitude of
the persistent current [1] which may be induced in the ring.
In recent years the existence of persistent current has been
demonstrated experimentally in metallic and semiconducting
mesoscopic ring systems [2–6]. The various theoretical
predictions of the magnitude of persistent current are, however,
stagnating around values lying between one and two orders of
magnitude below the experimental results [7].

While in a disordered linear chain (and, likewise, in
an infinite disordered ring as well) all eigenstates are
localized [8, 9], the precise effect of an AB flux on these states
in a ring has, to our knowledge, not been discussed in detail so
far. The aim of this paper is to analyse the problem, using a
simple extension of earlier work [10, 11] on localization in a
one-dimensional ring in the presence of a non-Hermitian field,
in the context of depinning of flux lines bound to columnar
defects in a superconductor [12].

The one-dimensional disordered ring threaded by an AB
flux φ is modelled by a tight-binding system composed of
N one-orbital atomic sites, n = 1, 2, . . . , N , of spacing
c1 forming a circular lattice enclosing the AB flux. The
Schrödinger equation for this system reduces to the set of tight-
binding equations [13]:

−ei 2π
N

φ

φ0 ϕn+1 − e−i 2π
N

φ

φ0 ϕn−1 + εnϕn = Eϕn,

n = 2, 3, . . . , N − 1, (1)

−ei 2π
N

φ

φ0 ϕ2 − e−i 2π
N

φ

φ0 ϕN + ε1ϕ1 = Eϕ1, (2)

−ei 2π
N

φ

φ0 ϕ1 − e−i 2π
N

φ

φ0 ϕN−1 + εNϕN = EϕN , (3)

where ϕn denotes the amplitude of an eigenstate wavefunction
at site n, E and εm (m = 1, 2, . . . , N) are the corresponding
eigenvalue and random site energies in units of a fixed nearest-
neighbour hopping parameter. The flux-dependent phase
factors in (1)–(3) (where ϕ0 = hc/e is the flux quantum,
with h the Planck constant, c the speed of light and −e the
electron charge) describe exactly [14] the effect of the flux-
modified boundary conditions by which the effect of an AB
flux on the wavefunction of a tight-binding ring is generally
introduced [1, 15].

The inverse localization length, ξ−1, of states of energy E
of the ring threaded by the flux φ may be defined by [9]

1

ξ
= lim

n→∞
1

nc1
〈ln ϕn〉,

= lim
n�N→∞

1

nc1

n∑

p=2

〈ln |Rp|〉, (4)

where we have defined the amplitude ratios (Riccati variables)
Rn = ϕn/ϕn−1, n = 2, 3, . . . , N and Q1 = ϕ1/ϕN in
terms of which (1)–(3) take a convenient form for recursive
solution [10], starting from an arbitrary ϕ1 at the initial site
n = 1. The angular brackets in (4) denote averaging over the
disorder.

Detailed analytic solutions of equations (1)–(3), rewritten
in terms of the Riccati variables and for a non-Hermitian field
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h substituted for i2πφ

c1φ0

h ↔ i2πφ

c1φ0
, (5)

have been discussed previously [10] to second order in the
random site energies, for arbitrary magnitude of h. In [10]
we performed the averaging of ln Rn expressed in terms of
zeroth-, first- and second-order contributions, R(0)

n , R(1)
n and

R(2)
n , in Rn , namely
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2
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]
,

n = 2, 3, . . . , N, (6)

where
R(0)

n = eiq, (7)

is related to the energy by

E = 2 cos

(
q + 2π

N

φ

φ0

)
, (8)

(where eigenstate energies in the absence of disorder
correspond to values q = 2π

N k, k = 0, 1, 2 . . .), assuming the
site energies to be identically distributed independent Gaussian
variables:

〈εi 〉 = 0, 〈εiε j〉 = ε2
0δi, j , i = 1, 2, . . . , N. (9)

We refer to [10] for the final explicit results for 〈R(1)2
n 〉

and 〈R(2)
n 〉 (in the non-Hermitian field case), using the

identification (5). The inverse localization length (4) of the
eigenstates of the ring threaded by the flux φ obtained from
equation (21) of [10] is given by
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The analysis of (10) in [10] for the case of an imaginary
vector potential corresponding to the real field parameter h
leads to a finite so-called inverse directed localization length
(IDLL) at energy E (equation (31) in [10]). In contrast, in the
present case we obtain from (8)–(11)

1
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= −i

ε2
0

4
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+ c.c.,

= 0, (12)

which shows that the solutions of the Schrödinger equa-
tions (1)–(3) in the presence of an AB flux are delocalized at
order ε2

0, i.e. we expect that 1
ξ

= O(ε4
0). Since this result is ob-

tained for any E we find, in particular, that the exact eigenstates
of the ring threaded by an AB flux have strongly enhanced lo-
calization lengths.

This contrasts with the exact result for the inverse
localization length for weak disorder in a linear chain (φ = 0)
given by the celebrated Thouless formula [16–19], namely

1

ξ1
= ε2

0

2

1

4 − E2
, (13)

which is of order ε2
0. We recall that (13) has also been rederived

in [10], using equation (4). In this case the validity of the
result is supported by the general theorems of Fürstenberg
and Oseledec [9] on the properties of infinite products of
independent random 2 × 2 (transfer) matrices, in terms of
which the inverse localization length of an unbounded linear
chain may be defined. The localization length in a one-
dimensional disordered ring at φ = 0 has sometimes been
identified with the Thouless expression (13) for a linear chain
(see, e.g., [20]). However, no valid proof for this identification
has been provided. As a result, there exists at present no
analytic theory of localization on a weakly disordered one-
dimensional ring at zero flux. In contrast, the present work
based on [10] does provide a theory of localization for the case
of a ring threaded by a finite AB flux.

Our result (12) suggests, in particular, that persistent
current in weakly disordered metallic rings threaded by an
AB flux is carried by states which are delocalized (i.e. free-
electron-like) to order ε−2

0 . The delocalized states (to the order
ε−2

0 ) induced by the AB flux imply the existence of a quasi-
metallic domain for ring perimeters lying between the elastic
scattering mean free path, �, and the localization length, ξ � �,
at finite flux. In the absence of the flux such a domain does not
exist since ξ is then of the order of � for a one-dimensional
system [21].

Finally, we observe that in our recent study of persistent
current in the tight-binding ring described by (1)–(3) [14],
the effect of a weak disorder enters generally via an overall
renormalization factor of the free-electron current in the
absence of disorder. Similar conclusions have also been
reached in the study of persistent current in the more
general case of spatially correlated random potentials [22].
In this sense our finding that the eigenstates of a weakly
disordered ring threaded by an AB flux are delocalized to
order ε−2

0 is consistent with our earlier results for persistent
current [14, 22].
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